Chapter 6: Common Device Elements
B. Stark

While a completed MEMS is a complicated device, the individua components of any
given system are much smpler to understand. Due to the nature of MEMS processing, no
single component can be very complex. This in turn means that underganding of a MEMS
device can be gained through knowledge of a few smple parts and understanding how they
interact. To ensure the reliable operation of a MEMS device it is sufficient to ensure the reliable
operation of al the congtituent parts.

One of the difficulties in writing a guiddine is trying to sdect maerid that will not be
dated before the book goes to press. To preclude this problem, this chapter does not address
gpecific sensor technologies, but rather it deds with device dements. It is assumed that a
knowledgesble reliability engineer can condtrue al the necessary information on, for example, a
capacitive accderometer by examining the sections on gructura beams and pardld plate
capacitors. It isfdt that this arrangement of the materid will increase its useful lifetime.

This chapter has been loosely organized into three sections. The first three subchapters
discuss gructura dements in MEMS. The next two subchapters, dong with part of the third,
discuss transducer eements.  The remander of the chapter is dedicated to actuator
technologies.
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l. Structural Beams

Structurd beams are a basic building block of most MEMS devices. A beam is, asthe
name implies, a long thin piece of materid that often serves as the supporting bads for a
sructure. Whilethisis farly sdf-evident, there are dso some commondities specific to MEMS
beams that are useful to understand. The mgority of beams used in MEMS have the
rectangular cross section defined below:

out of plane

B neutrd axis

inplane

+—>

Figure 6-1: Cross section of common MEMS beams. Dimension A is planar and is limited by the

minimum feature size of the processing technology. Dimension B is non planar and is limited by the
aspect ratio of the etching technology.

Figure6-2: SEM picture of beam with all dimensionslabeled. (from [155])

A SEM picture of a beam is included in Figure 6-2 to show the usud labels given to
each beam dimengion. It should aso be noted that the rectangular cross section is a generdly
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accepted gpproximation, as there are multiple non-uniform features introduced in device
congruction. In some cases, such as beams made with wet etching and certain CMOS
processes, the cross section is more trapezoidd than rectangular. However, once the basic
shape of the beam is determined, it is relaively smple to congtrue its mechanica properties.

A. Structural Analysisof Support Beams

) Static Deflections

Support beams are andyzed for both rdiability and performance usng techniques
common to most engineering dudents.  One issue criticd to understanding beams is
understanding how they bend under different loadings. The most common method to determine
this involves the Euler-Bernoulli equation

d?y _ M(x)

dx>  El (6-1)

where
x = direction dong the neutrd axis
y = direction dong the transverse axis
E = Young' s modulus
| = areamoment of inertia

M(X) = the bending moment in the beam, which is usudly afunction of x.
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Asthis definition may be a bit obtuse, Figure 6-3 illustrates the concept being described.
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Figure6-3: Displacement of loaded cantilever beams.

To andyze the deformation of a beam under transverse loading, Equation 6-1 is
integrated twice using the gppropriate boundary conditions. This yields the resullt:

y(X) = - éc‘o‘j\/l (X)dxdx+Cx+ D
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6-2b
y'(X) =- é(‘j\/l(x)dX+C ( )

where C and D are congtants determined by the boundary conditions.

For a cantilever beam, which is one of the mogt dructurd beams in MEMS, with the
boundary conditions of y(I)=0 and y’(1)=0 and a force, F, applied a one end, the equation
yieds

Fald 1°x 1%0
y(x) =- Eég 7+§3 (6-3)
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Figure6-4: Graphical representation of a cantilever beam deforming under atransverseload.

Figure 6-3 contains the equations describing cantilever deflections under other common
loading conditions. This analyss dso leads to another piece of information that is useful to
understand. Since Equation 6-3 describes a linear force-deflection reationship, it is essentidly
describing a spring reacting to an gpplied load. This means that it is possible to extract a Soring
condant, k, from this expresson. Evaduating y(X) a a specific point will determine the spring
constant.  For this example y(0), which is equa to -FF/3EI, will be used. Rearanging this
equaion yidds.

F _ SH (6-4)

y(© I

and, since Fly =k, this gives the reault:
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k, = E (6-5a)

The vaue of | can ether be determined by integration or by tables. For rectangular

cross sections and planar bending, | is a®b/12 and Equation 6-5a is rewritten as 6-5b. If anon-
homogenous beam is used, then the method introduced in Chapter 5-2C describes how to
normalize this beam to a uniform cross section.

_Ea®
y 4| 3

(6-5b)

While this expression is useful for predicting displacement under a given load, there are
some limitations to it that must be understood. Hooke's law of F=kx only applies for smal
displacements. For larger displacements, non-linear terms will gppear in the force-displacement
equations. The degree to which this equation applies thus depends largely upon how large a
force is gpplied to the structure.  Often, to smplify the development of devices, designers will
condruct structures that will operate soldy within the linear regime. However it is important to
understand that the linear force-displacement equation is only afirst order approximation of the
actua relationship between force and displacement.

(Bh)

Figure6-5: Beamsdisplacing an angle, f, dueto an applied torque. (from [11])
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For some gpplications, especidly those involving non-planar displacements, it is
necessary to subject structura beamsto atorque. There are methods for analyzing rigid bodies
under atorsond load, an example of which is shown in Figure 6-5. For these gpplications, it is
useful to relate atorque to the angle of twigt, f , which can be accomplished with the expression:

1o (6-6)
c,Ga’b
where

T = applied torque

C, = acondant defined in Table 6-1
bla | G Co
1.0 0.208 0.1406
15 0.231 0.1958
2.0 0.246 0.229
25 0.258 0.249
30 0.267 0.263
4.0 0.282 0.281
50 0.291 0.291
10.0 0.312 0.312
¥ 0.333 0.333

Table6-1: Constantsfor rectangular cross sectionsunder atorsional load.[11]

As might be expected, there is dso atorsond giffness related to beam geometry that is
useful in anadlyzing non planar actuators. This diffness, ks is defined by:

3
Ko%:mﬁ%ﬁ (6-7)
i) Oscillatory Motion

As gructura beams are often operated in resonant modes, it is necessary to analyze the
oscillatory motion of beams. Resonant frequency” is determined by the equation:

! The terms “resonant frequency” and “natural frequency” are used interchangeably in this section.
Although this is common in the literature, these are actually two distinct quantities. The relationship
between resonant and natural frequency is discussed in detail in Section 3-VII.
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Wo = (6-8)

where
k = tiffness or spring congtant
Myt = MOving Mass

The only two quantities required to determine the natural frequency of a beam are k and m.
Since k has dready been derived, it is necessary to cdculate the moving mass. The moving
mass can be andyticdly determined usng Rayleigh’'s method. However, this method exceeds
the scope of the guiddine. It suffices to know thet, for a cantilever beam, the moving mass is
roughly 23% of the total mass. This can be andyticaly described by

m, =.23r abl
(6-9)
where r isthe mass dengity of the beam. Thisleadsto afind expresson for resonant
frequency:
w, =1.o43|32 £ (6-10)
r
In cases when beams oscillate in torsion, the torsona resonant frequency is
W, = kf— (6-11)

Since beams driven by harmonic transverse loads behave smilarly to strings in tension,
the wave equation can describe andytically how a beam movesin resonance:

F_ mTy
% T (6-12a)

Through a subdtitution of the force for an expresson involving the moment, this
equation becomes:

Ty (6-12b)
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This equation describes the curvature of a beam as a function of time. Through the
study of differential equations, Equation 6-12b is solved as.

y = (A Sn(KX)+ A cos(KX) + A Snh(Kx) + A cosh(Kx)) cosim +Q) (6-13)
where
A, = congtant determined by the boundary conditions

K4 — erm
Ell

This reveals that, at resonance, a beam will oscillate in a Snusoidd fashion, with the
shape of the beam determined by the boundary conditions:

‘ P ‘ ‘ e J/\‘

Figure6-6: Oscillatory modesfor cantilever beams (top) and built-in beams (bottom).

While using the above techniques will determine the shape of beams under a variety of
loads, different methods will have to be introduced to insure that the beams will not fail under the
stresses caused by these loads.

B. Failure of Structural Beams

A gructura beam will fail when the maximum alowable stress has been exceeded. For
different types of materids, different faillure modes are exhibited, as discussed in Chapter 3.
However, for reliable operation, the stresses in materias should not approach ether yield or
ultimate stress. There are severd methods useful for calculating stresses in materias.

The normd dress, s, iseasy to cdculate. It can be determined by the relationship:
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s, = @ (6-14)

where y isthe vertical distance from the neutra axis.

While this equation is valid for smal deformations, for large deformations, the dope of a
beam at the loading point*, %{ , becomes important. For large deflections the maximum stress

|
is

(6-15)

The ratio of s ™' /s | #9 s compared to get an edimate in the error in using the

linearized approximation of Equation 6-14. One study [40] found the error to be 5% at
agly| O . . N

tan’ 1§d—i +=30°, 11% at 45° and 22% at 60°. So, the extent to which alinear approximation

]

is vaid depends upon the size of the deflection, as one would expect.

Determination of shearing stressis dightly more difficult. Shearing stressis caculated by
examining a section of abeam and using the equation:

i =VQ (6-16)

ave
It

where
t ae = @verage shearing stress in a section of the beam
V = vertical shear in agiven cross section

t = thickness of the cross section

y=C
Q = 1% moment of the area defined as Q = ¢jydA

y=yl

! This derivation assumes a concentrated load.
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y =0 (neutrd axis)

<4+

Figure6-7: Side(top) and cross sectional (bottom) views of cantilever beam
under shear force and bending movement.

The relationship among al of these valuesis presented in Figure 6-7. To determinet may,
it isusudly necessary to examine t 5 @ a function of y. For beams with the height > 4 width,
the gpproximation of t,=1.5" V/(W" h) is useful. However, for planar bending in beams,
wherethe b 3 ardaionship obviates this approximation, the full structurd andyss will have to
be performed. It is convenient to recognize that maximum shearing stress will aways occur
aong the neutrd axis, unlessthere are marked variationsin beam thickness. Thus, determination
of shearing stressin beams can usudly be performed smply by examining t 4. at y=0.

For rectangular beams subjected to a torque, there will be a shear stress that will vary
as a function of horizontd and vertica position. However the study of mechanics reveds that
the maximum dress, which is the most important in terms of structurd analys's, occurs dong the
neutrd axis of the wider face of the beam, which, in this discussion, is labded as b. This
maximum shearing Sress is determined by the relation:

T

t . =—
c,a’b (6-17)

max

where c¢; isacongtant defined in Table 6-1.

While usng the above andlyss leads to a good understanding of when fracture will
occur, there are other failure modes in sructurd beams. Beamswill usudly fall if they come into
contact with other structures, due to adhesive forces. To andyze the probability of this, the
deflection of every beam must be considered under maximum load.

101



Another concern raised in Chapter 3 was the impact of fatigue in beams. Over long
cycle times, the properties of beams will shift, which, as this section has shown, will change the
datic and resonant characteristics of the structures. These changes will ater the output of many
sensors based upon measuring frequency and deflection. Another fatigue related mechaniam is
the gradud relaxation of the fracture srength of a materid. Beams that were initidly driven
within stress tolerances of a materia, can be driven past them, as the tolerances decrease.
Although it should be noted again that this mechanism has yet to be observed in slicon.

Therma changes can dso have an impact upon beam reliability. Thermd stressing and
ungtressing creates mechanica fatigue in beams. In large temperature changes, as experienced
in the space environment, most MEMS beams will aso experience bimetallic warping due to the
fact that they are made of different materids that have mismaiched thermd coefficients of
expangons. Thermd fatigue can aso contribute to delamination.

C. Additional Reading

F. P. Beer and E. R. Johnston, Mechanics of Materids. Second Edition, McGraw-Hill.
New York, 1992.

C. M. Harrisand C. E. Crede, Shock and Vibration Handbook Volume 1: Basic Theory and
Measurements, McGraw-Hill Book Company, Inc., New York, 1961.
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1. Thin Membranes

In recent years, thin membranes have found increasing use in pressure and flow sensors.
They provide a large sensng area coupled with low mass, which is advantageous in many
goplications. A membrane is commonly assumed to be any Structure with a z dimenson much
gmdler than itsx and y dimengons. While the membranes used in MEMS do not fit the classic
definition of plates, their thickness deformation can be influenced by in-plane tendon. Thisterm
is also applied to these devices. A membrane structure is shown in Figure 6-8. The analysis of
amembrane is more difficult than cantilever beams, but it is il tractable.

SENSOR #5)
2d JUL 97

19.0 kv 19%pm  GODEG TILT = sgpes

Figure6-8. A thin plate viewed at 200x magnification. (from JPL)

A. Structural Analysis of Membranes

i) Static Deflection

There ae severd methods commonly employed in the analyss of thin plates or
membranes. The most obvious method is to use the equations of motion to describe the plate,
as was done for beams. Thisis accomplished by defining coordinates for the plate in the x and
y axis and taking into account al shearing and bending forces. This anaysisleadsto a system of
sx equations and six unknowns which reduces to the result:
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(6-18)

wlie!

where

w = the plate deflection at any given point
g = the latera load function

B . _ ER
D =the plate stiffness = ———
12(1-n*)
h = the plate thickness

The solution of this equetion clearly requires determining the function w, such that it
satisfies both the loading and boundary conditions. Since empirica data shows that these moddls
are not the most accurate, the method developed by J.Y. Pan[14] is often used. This method
begins by determining the midpoint deflection of a membrane, Wy, For a square membrane there
is areationship between midpoint deflection and an applied pressure p given by:

hs hE

p(Wo) = C1_2Wo + C2—4WS [14] (6-19)
a a

where
S =internd stress
a= plaewidth
W, = plate deflection at center point

C,,C, = functions of Poisson’sratio, defined in Figure 6-9a
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Figure 6-9a: Dependence of C, and C, upon ratio.[15]

Poisson’sratio.[15]

Once wp is known, it is possible to determine the shape of the entire plate. If the origin
of the plate is taken a its geometric center, then the deflection is described by:

_& Xy XY Py §
W(x,y)—gwoﬂvl 2 T gCOS@Zag oy (6-20)

where w; and w», are functions of Poisson’srétio related to wy by Figure 6-9b.

While this method has the atribute that it offers a closed form solution to the shape of
the plate as afunction of x and y, it is not dways possible to solve the deformation of the plate
so smply. Ininstances when the plate is not smply loaded or supported, it is often necessary to
resort to other methods. Among the most common of these is to numericdly moded the
membrane. This process, known as the method of finite differences, separates the plates into
discrete points and andyzes the plate piecewise. This method is discussed in detail in Chapter
7.

i) Lamb Waves

Engineers aso utilize waves on plates as transducers. There are two kinds of waves
thet travel in plates. They are dilation waves, which involve changes in volume without rotation,
and digtortion waves, which do not change volume but instead result in rotation and shearing of
agiven materid. In more common terminology, the dilation wave is referred to as a longitudina
wave, while the distortion wave is often called a transverse or shear wave. These waves travel
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with a velocity that is materid dependent and the respective velocities of each, g and ¢, are
related by the ratio:

G _ @- ) (6-21)
(o} 2(1-n)
given that:
C = | +rZG (6-22a)
G .
c, = - (6-22b)

wherel isLamé s Parameter, defined by n = |

2(1 +G)
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Figure 6-10: Wave propagation in solid media. (from [6])
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In plates, these two waves interact in complex ways at the plate boundaries, which
results in the formation of a plate wave, which isdso cdled alamb wave. These waves trave in
either symmetric or anti symmetric modes as shown in Figure 6-10. The lowest order of these
modes are very Smilar to surface acoudtical waves, or SAW, that propagate dong a semi-
infinite medium. However, in thin plates, the lowest order symmetric mode is digpersionless and
propagates much fagter than a SAW on the same materids. The lowest order anti-symmetric
mode, on the other hand, involves flexure and its wave velocity decreases monotonicaly to zero
as the plate becomesinfinitey thin[51] Lamb waves travel with a phase and group velocity that
is defined by:

_ 12D ~ (6-233)
Ps A Ry gs =~ Vps
2D 0
v, = wh gTDi Ve = 2V, (6-23b)
h°r g

where g and p represent group and phase, and s and a represent symmetric and anti-symmetric.

One of the interesting results of this andyss is tha tenson and wave veocity are
coupled. If asmall section of a plate is considered with dimensions, dx and dy, and atension, T,
in the x-direction, the out of plane force on the plate can be modeed by two forces, a fiffness
and atenson:

4
dF = - D‘HT W ixdy (6-243)
X

2 6-24
dF,; :TjT—Vzvdxdy (6-24b)
X

If these equations are combined and related to the acceleration of the membrane, the
result is

-D

2,
dxdy = Mdxdy 1 (6-240)

T'w T°w
7 dxdy+T P

X e
where M isthe mass per unit area of the membrane
If this equation is solved through separation of variables, one finds that the solution is:
e ] (Wnt' kn X)
w(xt) =C.e (6-25)

where
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P = period of the actuator that is oscillating the plate
N = integer representing the different modes of the device

This leads to the solution that the phase vel ocity is dependent on tension and mass:

6-26
T+%D ( )
Vp » T

As this andyss shows, the phase velocity is coupled to both the tenson and mass
dengty of the plate. This enables sensors that detect lamb waves to be sengtive to awide range
of different effects, with temperature and pressure changes being the more prevalent changes
sensed.  The advantage of using anti-symmetric lamb waves in sensors is that, on very thin
plates, they have a phase velocity that is usudly much dower than that of sound in most media
This dlows these devices to tranamit waves without disspating large amounts of energy to the
surrounding environment.  In comparison to surface acoustic waves, which disspate on the
order of 1 dB per wavelength, lamb waves have extremdy low loss mechanisms. In lamb
waves, the disturbance to the surrounding medium only extends to a distance of | /2p, which
limits the acoudticd energy loss. For an in-depth discussion of the physica properties of Lamb
waves, Reference [115] trests the material more thoroughly.

i) Modal Waves

While lamb waves have many applications in membranes, it is dso useful to excite
sanding waves on plates. A standing wave, as opposed to alamb wave, involves ostillationsin
fixed spots. These waves have maximum displacement a the resonant frequency of a device.
On a resonating plate, there will be digtinct spots cdled nodes, where vertical motion is
essentialy zero, and spots caled anti-nodes, where oscillations are maximized. The andys's of
sanding waves begins with a dynamic verson of Equation 6-18:

ﬂzW+N Tw +N 1w

NCY T
DN"W = MthW + NX ﬂXZ xy ﬂxﬂy y ﬂyz (6'27)

where
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Figure6-11: First six vibratory modesand resonant frequenciesin a squar e plate with nodal lines
shown.[54]

Nx, Ny = Normal loadingsin the x and y directions
N,y = shear loading
W ° w = AW(xy)cos(wit+q) where A isthe ostillating amplitude

To solve this equation, the boundary conditions for W must be found that fit the end
conditions. Since many square MEMS membranes are clamped on al sdes, Figure 6-11
shows the modes and resonant frequencies of these structures. For other solutions to oscillating
plate problems, Reference [54] offers an excedlent andyss of plate mechanics.

B. Failure of Membranes

As membranes can be conddered two dimensond equivaents of one dimensond
beams, they have smilar falure consderations. If Equation 6-18 is solved andyticdly, then the
stresses on the plate are determined by the equations:

Ez a&°w  °wo0
zg 7 tN—=
1-n?2&0¢ W 5

X

(6-283)

Ez &°w w0 (6-28b)
Sy=- 2 g > TN
1-n“ gy X g
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__Ez T'w (6-28¢)
Y " 1+n xqly

where z is the distance from the neutrd axis of the plate

In order to determine the maximum dress in a plate, the following relationships are dso

ussful:
2 1?wG 6-29a
- &, vzvg (6-29)
g5 0
o) 6-29b
M, =- D&ﬂ \;v: (6-29b)
a

If the bending moments are known, the stress digtribution can be calculated. Stress is
zero dong the neutrd axis and rises linearly to a maximum at the surface. This maximum vaue
is

6M 6-30a)

(5. = hzx (6-303)

o) _6M, (6-30b)
y/ max h2

This andyss can be smplified for a membrane with a uniform loading, g, and fixed
boundary conditions on dl four Sdes. These structures will have the following stresses:

_ 2
stress at center of longedge: s ., = blqu

(6-31a)

2
dressat center: s = bztizb (6-31b)

S S S S S

S S S S S S SS

The parametersa, b; and b, are functions of the plate geometry and boundary conditions, and
may be determined from the table below:
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alb 1.0 1.2 14 1.6 18 2.0 ¥
b, 0.3078 0.3834 | 0.4356 0.4680 0.4872 0.4974 | 0.5000
b, 0.1386 0.1794 | 0.2094 0.2286 0.2406 0.2472 0.2500
a 0.0138 0.0188 | 0.0226 0.0251 0.0267 0.0277 0.0284

Table6-2: Plate coefficients (four sidesfixed)™.

Solutions for other geometries and loading conditions are dso available; the reader is
referred to References [58] and [59] for additiona information.

Another area of concern in plate mechanics is the effects of internd sress upon
deflection and strength.  As discussed in Chapter 3, thin films can often have large resdud
dresses. As this stress is coupled to temperature, changes in temperature will dso affect the
output of many membrane based sensors.

A problem with udng lamb wave ostillators is that their sengtivity is coupled to a
number of different changes. Using these devicesin space gpplications will be especidly difficult
due to the fact that they are natura thermocouples. For lamb wave oscillators to have a future
in the aerospace indudry, it must be proven that they are sufficiently decoupled from many
common aerospace phenomena, such as large temperature and pressure changes, to be
effective transducers.

C. Additional Reading

Timoshenko, S. and Woinowsky-Krieger, Theory of Plates and Shells: 29 edition, New York:
McGraw-Hill, 1959.

I. A. Viktorov, Rayleigh and Lamb Waves. Physcad Theory and Applications, Plenum Press:
New York, 1967.

! The discussion on stresses on a bounded rectangular plate is adapted from work done by K. Man at JPL.
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1. Hinges

In MEMS, there is a need for devices that can produce out of plane motion without the
limitations of atorsond spring. In these ingtances, hinges are often used.

Figure6-12: A typical hinge. (from [93])

In technica parlance, a hinge is an end condition that prevents trandation of a structure,
but dlows free rotation. Often in MEMS, flexible structural beams that have hinged-boundary
properties are caled hinges. However, since the mechanical and rdiability characteristics of
these devices are Smilar to that of structural beams, there is no need to repest that materia here.
It is enough to treat those devices as structurd beams with narrow cross sections that create
stress concentration at the interfaces with thicker beams.

This section will discuss surface micromachined non-planar hinges. These hinges can
perform a multitude of tasks. One common implementation is to use hinges to hold structures,
which were fabricated in a planar postion, out of plane. Another common use of hinges is to
bind non-planar structures together, as in the case of a cage or a box. This alows the
fabrication of extremey high aspect ratio dructures by common surface micromachining
methods. This technology has enabled multitudes of new devices, such as optica devices and
microgrippers. One of the biggest advantages of hinges is that they enable devices to be both
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thermally and dectricaly removed from the subgtrate, which limits much of the noise common to
planar sensors.[93]

A. Structural Analysis

A common hinge is depicted in Figure 6-12. These devices are Smply constructed with
only two parts. There are severa types of hinges that were initidly reported by Piger €. d. in
[93], which are represented in Figure 6-13. 6-13a shows a substrate hinge, which is
congtructed out of a pin and a staple. The pin is a structurd beam held down by the staple,
which is a curved membrane. This hinge is often used to support non-planar structures and is
fairly common in opticd MEMS technologies. The other two hinges are called scissor hinges.
They are congtructed of interlocking beams, as shown, and usudly have a wider range of
motion. Scissor hinges are usualy used to hinge released Structures to each other.  In many
gpplications, hinges are not used to support large ranges of motion, but rather are used to
support datic sructures. If the hinges are to be used in this satic mode, a layer of materid is
depogited after assembly to bond the hingesinto position.

@ (b) (©

Figure6-13 (a-c): Threebasic hingesaspresented by Pister et al [93]
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B. Reliability Concerns

One of the limitations in designing a subgtrate hinge isin desgning the pin so that it is not
wider than the alowable clearance of the staple. While thisis an easy enough issue to address
in desgn, it does provide some upper limits on the strength of the hinge.  Scissor hinges, on the
other hand, do not have limitations on the width of the beams. As a result scissor hinges are
consdered stronger structures than substrate hinges.  If the hinge is anchored in place by the
depostion of materid after the device has been assembled, the adhesive srength of the
deposited materid will determine the hinge strength.  Although Pigter et d. reported a PECVD
oxide layer that can withstand a torque of 10 nNm, this data would have to be independently
determined by individua foundries.

Another area of concern in hinged devices is the issue of assembling hinged devices.
While this is commonly done with micromanipulator stages in the laboratory setting, it may be
extremely difficult to do this on a reproducible basis on a production line. As a result,
membranes that are supported by hinges must be examined for damage caused in the assembly
process.

C. Additional Reading

K. S. Piger, M. W. Judy, S. R. Burgett, and R. S. Fearing, “Microfabricated Hinges’ Sensors
and Actuators A, Val. 33, pp. 249-256, 1992.

M. E. Motamedi, M. C. Wu and K. S. Piger, “Micro-opto-electro-mechanical Devices and
On-chip Optical Processing” Optical Engineering, Vol. 36, No. 5, May 1997.
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V. Piezoresistive Transducers

Fezoresdtivity is the property of a materia whereby the bulk resigtivity changes under
the influence of a dress fiddd. While dl materids have varying degrees of piezoresgive
responses, piezoresstors are commonly employed in semiconductor sensors because many
semiconductor materids have large piezoresstive responses.  The actud physics behind
piezoresstive devicesis dightly involved, but necessary to understanding its effects.

A. Formal Definition

To understand piezoresstivity, severd other concepts must be first introduced. For a
three-dimensiond, anisotropic crystd, the eectric fied is related to a current by athree-by-three
resstivity tensor given below.

e:'exU érl s r5l:| éxu
& u_e U8 U 32
Evu=é's o2 r4l]xgyu (6-32)
ge.q er; r, rs;g 8.t

If a Cartesan coordinate system is digned to the <100> axis, then ry, rs, and rg
become correlation coefficients, which relate the dectric field in one axis to the current in a
perpendicular direction. This leads to the result that in an isotropic conductor, such as
unstressed silicon, 1 1=r ,=r 3=r and r 4=r s=r =0. These vaues can be related to incremental
changes in resgtivity by the following equation:

er,u éru ébr,u
e uU e u g:) u
¢za &g e
&,0_&d ér,u (6-33)
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&0 &' I'4(
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To define the piezoresidtivity, al one needs to do is to reae the fractiona change in
resdivity, Dr i/r to the stresses in the crystal.  In order to do this fully, a 6x6 matrix must be
defined. But for acrydd, this matrix will exhibit the same symmetries as the crystd lattice itsdf,
which will obviate the need for many of the matrix coefficients. If the coefficients are defined as
pij, acubic crysta structure will only have three non-vanishing coefficients. For a silicon lattice,
the matrix becomes:
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If dl these equations are combined, it is possble to get an expresson for the dectric
fidd as afunction of Stress':

Ex=r ix+r P11S xix+r p 12(8 ytsS z)ix+r p44(|yt yZ+iZt XZ) (6-35&)
Ey = riy+r PuSyly+ Paa(Sx+S )iy +r Paalixt yz+izt «y) (6-35h)
E, = iytr PuS it Pra(Sx+Sy)ir T Paslixt iyt ) (6-35¢)

These equations clearly show that there is a direct relationship between stress and
resdtivity. It is dso important to note that materias with smal piezoresistive coefficients will
have more limited responses than those with larger coefficients. One interesting aspect of
Equation 6-34 isthat it closaly resembles Hooke' slaw. In fact, thistensor isrdating aresdtivity
drain, ingead of a mechanica drain, to the stresses upon a material. As such, thereis dso an
orientation dependence on the piezoresstive coefficients Smilar to the one discussed for the
elagtic moduli in Section 3-1A. For an in-depth discusson of this materid, Chapter 4 in
Reference [6] offers a more complete mathematica description of piezoresitivity.

B. Piezoresistive Sensors

Devices that utilize the piezoresdtive effect are designed so that mechanicd dress
occurs simultaneoudy with an event to be measured and that the diress is proportiond to the
magnitude of the event. Currently there are two kinds of piezoresstive sensors made.
Membrane sensors are manufactured to measure pressure and flow while cantilever beams
sensors are made for accelerometers.

Membrane sensors are usudly designed as a thin single crystd slicon plates supported
by athick ring. Usudly a piezoresgtor is built into the edge of the device to utilize stress
concentration.  When the membrane deforms under an externdly applied load, there will be

! This discussion assumes an infinite bulk lattice. For finite crystals there is a small correction factor due to
dimensional changes.[6]
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dress on the piezoresstor. On cantilever beam sensors, the piezoresistor is, for Smilar reasons,
placed on the surface of the beam near its support.

If it is assumed that the mechanicd dtress over the resgtor is congtant, the change in
res stance can be given as.

DR__ .,
R SiP, +S P (6-35d)

where
S|, St =longitudina and transverse stresses
pi, Pt = longitudina and transverse piezores stance coefficients

For aresstor made of p-type materid this expression reduces to

DR_p
?—f(& -s)) (6-36)

For n-type resistors the expression becomes
(s, +s,) (6-37)

D_R:pll+p12
R 2

One important feature of these equations isthat, due to the fact that they assume uniform
dressfidds, they are only vdid for resstor szes much smdler than the membrane or beam size.

Usudly piezoresstors are configured in a Wheatstone bridge. Two resstors are placed
to measure gtress pardle to current flow, while two are placed to measure stress perpendicular
to current flow. This arrangement works so that any decrease in resstance from tensile stress is
balanced by a corresponding increase in resistance for compressive stress. This has the effect of
cregting a differentid output of opposite Sgns on each sde of the bridge. The tota voltage
change is defined as

DR
DV = Fvb (6-38)

where V,, isthe voltage gpplied to the bridge, as shown in Figure 6-14.
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Figure6-14 (a,b): Schematic representation of the position of four piezoresistors on a membrane (left) and
accompanying circuit diagram (right). The arrows represent resistance changes when the membrane
defectsin the—z direction.[6]

C. Rdiability I'ssues

One of the problems that will be encountered in usng piezoressors in highrd
gpplications is that they exhibit a temperature dependence. If the relationship between the
piezoresistive coefficients and temperature is plotted, it becomes gpparent that there is aroughly
linear relaionship between log(p) and log(T). For a generdized description, the piezoresstive
coefficient can be determined as a function of both doping concentration, N, and temperature,

T, by:
P(N,T) =p,P(N,T) (6-39)

where p isthe low-doped room temperature piezoresistive coefficient.
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P(N,T) is offered grephicdly in Figure 6-15. As can be clearly seen, a low doping
concentrations, there is better sengtivity but a greater temperature dependence. As doping
concentrations becomes greater than 10%° atoms/cnt, the temperature dependence becomes
indiscernible, but sensitivity decreases greetly. For space applications, with the great therma
ranges usudly required, these devices will dmogt certainly have to bdance the sengtivity
requirements with the temperature dependence.

1.00E+19
N (atoms/cm®)
1.00E+20

T(0)

Figure6-15: P(N,T) for nsilicon. Ascan beseen, P(N,T) convergesto a nearly uniform, albeit smaller,
value ver sustemperature at doping levels above 10° atoms/cm®.

D. Additional Reading
Sze, S. M. ed., Semiconductor Sensors, Wiley Inter-Science, New Y ork, 1994, Cp. 4.

Y. Kanda, “A Gragphicd Representation of the Piezoresistive Coefficients in Silicon”, 1EEE
Transactions on Electron Devices, Vol. ED-29, No. 1, January, 1982.
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V. Tunnding Tips

Electron tunneling is a concept that was developed in this century as an outcropping of
quantum theory. Tunneling developed from the study of the energy of an eectron in a confined
space. Basic quantum theory entails Schrodinger’ s equation, which describes a particle' s wave
function, y , by the rdation:

& 2m
N7y =-—=(E- V)Y (6-40)

where
h = Planck’s congtant of 6.62617° 10* J-s
E = totd energy of the particle
U = potentid energy of the particle
m=massof thepatice

The wave function of a paticle is usudly not as informétive as the vaue of the wave
function multiplied by its complex conjugate, y >=y "y *. This vaue represents the probability
that a particle will be in a given point in space. If this equation is solved for the case of an
eectron that is in a one-dimensona energy wel of width a, bounded by two infinite potential
energy barriers, as depicted in Figure 6-16, the solution to Schrodinger’ s equation yields:

y %0=0{x<0}

5 X &
Y 2(X) = (?izgsn ZE;HLQ {O<x<a} (6-41)
edg e ag

y “(x)=0{x>a}
where nisan integer.

This eguation shows that the electron is bound by the infinite barriers, and can never
escape from the wdl it isin. However if the barrier a a is replaced with a barrier of finite
energy and width, then solving Schrédinger’s equation shows that the dectrons will actudly
tunnel through the barrier and there will be a non-zero probability that there will be an eectron
on the other Sde of the barrier. This means that it is possble for ectrons to actudly pass
through areas in which, according to classca physics, they do not have the energy to penetrate.
It isthis phenomenon, called eectron tunneling, that is utilized to produce tunneling tip sensors.
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Figure 6-16: Probability distribution of an electron trapped in a well. The figure on the left shows an
electron bounded by two infinite wallswhile the figure on the right shows an eectron bounded by two finite
walls with afinite energy barrier, which is greater than the energy of the eectron, in the middle. Ascan
be seen, there is a finite probability that the electron will penetrate the barrier and be on the other side.
Thisdiagram roughly correspondsto thedevicein Figure 6-18.

Tunnding tips are smal pointed tips, shown below, that were initidly developed for use
in eectron microscopy. They have since been adopted by the MEMS community because the
tunndling effect is an extremey accurate way to measure displacements caused by externd
effects.

Figure6-17: Tunnelingtip on SCSbeams. (from [154])
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A. Physical Description

It has been shown that the current caused by tunneling across a narrow barrier is given
by:

| vetaf) (6-42)

where
V = hias voltage on the tip
a= 1.025 A'lev'?

f = the effective energy height of the tunndling barrier = - — TV,

al 1V x
x = the physica width of the energy barrier

This means that an eectronic circuit capable of detecting a 1% variation in a 1 nA
current from a 100 MW source would be able to detect deflections on the order of 0.003 A.
For this reason tunneling tips have dtarted to be developed for use in high data storage
gpplications and high sengtivity acceerometers.

Typicdly tunneling sensors are designed by suspending a mass above the tunneling
sensor. An externd force, which can be anything from infrared radiation to acceleration, pushes
the mass downwards, which increases the tunndling current and becomes a measurable event, as
shown in the diagram below.
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Figure6-18: Typical layout for atunneling sensor.

While tunndling sensors are among the most accurate sensors avalable in MEMS
technology, they do suffer from a number of rdiability problems[41,43]

B. Rdiability Concerns

One of the great difficulties in making tunnding accderometers is in fabricaing the
devices. The tunneling tips need to be made of a conductive surface that does not react with the
ar. While conventiond tunneling tips, Snce they operate under an Ultra-High VVacuum, can be
made from a multitude of metas, microsensor tunneling tips are much more limited in the
materids that can be used. Gold has been found to be useful in the production of sensors, but it
is difficult to create good adhesion between a gold tip and an insulating subgtrate, which is
uudly SO,. This created a need for multiple layers of adhesve materids, which cregte
processing problems and reduce yield.[42] While the fabrication of these devices is certainly
not an impossible task, they do suffer from low yidld rates.

Ancther problem that is more difficult to handle gems from the fact that the tunndling
effect is highly displacement senstive. Since, in order to get a tunnding effect, the tip must
usualy have a bias voltage, which is typicaly under 1 valt, and be within nearly ten Angstroms
of the moving mass, contact between tip and mass is unavoidable. This contact must be
accounted for in design of mechanica system and circuit. On the mechanica Sde, it isimportant
to place one of the eectrodes on a compliant support to limit the force to the tip during the
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inevitable contact. The circuit must dso limit the current during contact. If both of these
precautions are taken, the danger of tip crashes will be mitigated. For devices designed with
these techniques, crashes have occurred a low frequency operation for months with no
detectable change in operationa characteristics. However, any tunnding tip designs need to
have these issues thoroughly addressed for high-rd applications.

These devices, due to their extreme senditivity, are aso susceptible to thermal noise and
mechanicd vibration. It istypicaly these effects that limit device sengtivity and they need to be
addressed for any tunnding sensor.  There is aso eectrica noise in the measurements of the
tunneling output. [N many devices, the dectrica noise spectrum exhibits a 1/f dependence. This
noise creates an error in measurements that scales on the order of 10° A/HZ*. While this noise
is fairly inggnificant for many applications, it does provide a limit on the actud sengtivity of the
device[41]

C. Additional Reading

T. W. Kenny, W. J. Kaiser, H. K. Rockstad, J. K. Reynolds, J. A. Podosek, and E. C. Vote,
“Wide-Bandwidth Electromechanica Actuators for Tunnding Displacement Transducers’
Journal of Microelectromechanical Systems Vol. 3. No. 3, September 1994.
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VI. Electrostatic Actuators and Transducers

A. Paralld Plate Capacitors

¥, 90

areaof plate

10 EII-"i"I 20KV Qo 001

Figure6-19: Closeup view of paralle plate capacitor with the area and gap
labeled. (from[155])

Capacitors have been developed and understood for as long as any electronic device.
They are both smple to construct and understand. As such, capacitors are fundamenta to
many devices and have been used extensvely in the microdectronics industry. It has been
edimated that a modern microprocessor has anywhere between seven and ten million
recognizable capacitors in its design. A capacitor is Smply two conductive objects separated
by some distance, d, which store dectricd energy by atracting and repelling free dectrons
within the conductors. For MEMS, a prevdent capacitors design conssts of two pardld
plates, as shown in Figure 6-19.
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) Electrical and Mechanical Analysis

The capacitance of an object is defined as the amount of dectric charge that it can store
per voltage. The common mathematical expresson of a capacitor's ability to store energy or
chargeisrelated by the expressons:

q=CV (6-43a)

(6-43b)
where

g = electric charge

V = voltage

C = capacitance

U = energy

For capacitors congtructed of two pardld plates a useful reationship has been derived

that:
C= eé (6-44)
d
where

A = area of one of the plates
d = distance between the plates
e = the permittivity of the materia between the two plates

One reason that capacitors have become prevdent in MEMS is that capacitance is a
function of digance. This means that a change in distance will result in a change in capacitance,
which is a measurable event. If a cgpacitor immersed in air is assumed to have one fixed plate
and one plate that displaces a distance, x, from the rest, the capacitance can be rewritten as.

A
C= eom (6-45)

where
€ = permittivity of afree space (8.85* 10" F/m)
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If asensor isto be fabricated out of pardle plate capacitor, there is a smple method to
electricaly detect a change in capacitance. Since a current, 1, is related to the charge on a

capacitor, Q., by the equation:
. _ dQ,
(6-46)

Then using the circuit below,

+
Ve = Ve¥sin (wyt) <>

Figure 6-20: Basic circuit for detecting changesin capacitance.

a change in current will be gpproximately rdlated to a change in displacement by the

rdationship™:
ebxu (6-47)

Di, (DX) » WSVSC(d)gFH

Another useful feature of pardld plate capacitors is the fact that they can be made into
actuators. Given that aforce, F, isrelated to potentia energy by the equation:
(6-48)

F=-"

x

it is possble to derive the relationship for pardld plate capacitors thet:
g,AV?
Fz—— (6-49)
2428 - X2
e dg

This shows that an applied voltage will exert a force on the capacitor plates. It is this
electrostatic force that is used to make actuators out of pardlel plate devices.

! Thisisalinearized result that only applies for Dx<<d.
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i) Limitations of Parallel Plate Capacitors

While parallel plate capacitors have good actuation and sensing ahilities, they have some
severe limitations.  The greatest drawback to using these devices is that they are non-linear.
While they can be treated as linear for smdl displacements, for large motions, pardle plate
capacitors clearly exhibit non-linear behavior.

One of the dangersin these devices is the potentid of the plates touching. As discussed
in Chapter 3, when two meta surfaces come into contact, adhesive forces exert a strong bond
that usudly causesfalure. This problem is especidly prevdent in pardle plate devices because
of the non-linear force that increases quadraticaly with distance. A common design rule used is
that, if Dx 3 1/3 d, the device will usualy have sufficient force to transverse d. To prevent this,
pardld plate devices must be designed to displace much less than this amount.[10]

Pardle plate capacitors could aso be susceptible to dectrogtatic discharge. An ESD
would have a smilar effect as agpplying a ddta function to the device. If the voltage spike is
large enough, it could induce gtiction by bringing the plates into contact. Unfortunately the scant
research into ESD in MEMS has not provided any concrete data on the effects of ESD on
pardle plate capacitors and these theories have not been experimentaly verified.

iii) Additional Reading

W. S. Trimmer, K. J. Gabrid, and R. Mahadevan, “ Silicon Electrostatic Motors’, Transducers
'87, The 4™ International Conference of Solid-State Sensors and Actuators, pp. 857-860,
June 1987.

W. S. Trimmer and K. J. Gabrid, “Design Congderations for a Practical Electrostatic Micro-
Motor”, Sensors and Actuators, Vol. 11, pp. 189-206, 1987.
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B. Comb Drives

Figure6-21: A standard comb drive. Thearrow pointsto a particulatethat landed
on one of the electrodes.

Due to the problems discussed with making dectrogtatic pardld plate actuators, there
have been attempts made to make devices that utilize eectrogtatics to produce motion while
eliminating the relationship between force and distance. The most common device made to
accomplish thisis called a comb drive because of its overal comb-like gppearance, as seen in
Figure 6-16. Comb drives operate by using fringing fields to pull one set of the drive into the
other. Actuation occurs in one dimension only and the equations of motion are derived in the
next section.

i) M echanical and Electrical Analysis

Essentidly comb drives are composed of multiple structurd beams and, as such, they
are not difficult to andyze. As shown in the picture, there are two sets of interdigitated
eectrodes. Generdly one of them is fixed while the other is mobile. The force generated by a
voltage is described by:
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e bV?
== (6-50)

where b isthe verticad height of the cantilever beams.

++++++++++
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Figure 6-22; Overhead view of basic unit of acomb drive.

This equation shows that the force produced by this device is independent of the
displacement of the middle electrode. As a result, comb drives are among the more common
actuators in MEMS. The other fact that makes comb drives appedling is that n comb drives
produce a force equal to i F. This smple scaling makes it possible to produce macroscopic
forces on the MEMS scale. It is not unreasonable to manufacture an array of comb drives to
produce upwards of 30 Newtons with as little as 10 volts applied to the eectrodes[10] While
these agpects of comb drives are quite gppedling, there are dso some serious limitations to their
performance.

i) Limitationson Design

One of the problems with comb drives illustrated by Figure 6-22 is that there is one
electrode. For argument’s sake, assume it to be negatively charged, surrounded by two
positively charged electrodes. While the forces on the eectrode are baanced by the equa
gpacing of the two gaps, clearly any perturbation of the center dectrode will cause an offset of
the forces and pull the eectrode to one sde or ancther. In engineering terms, the comb drive is
an inherently ungtable sysem. To combat this problem, severd steps must be taken in the
design to insure that the device does not fail at the firgt vibration. Since stability problems are
problems in energy storage, the key to designing a stable comb drive is to design it to ore
more energy in the y direction than in the x direction. To make U, >> U, the following
condition must be met:
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$kd?>> k| 2

(6-51a)
where
ky = spring congtant in the'y direction
ky« = spring congtant in the x direction
l, = The length of the electrode
which means that:
| 2
k, >> ? K, (6-51b)

Thisisillugtrated in Figure 6-23.

While thisis hardly an exact answer to the problem of stability, this solution does lend it
some formdism. For high-rel gpplications, a large safety factor will have to be included to
guarantee that the comb drive does not fal due to surface contact. If a comb drive is not
entirdy dable, it is possble for the drive to not completdy fail but ingead enter into chaotic
oxcillatory modes.  While this phenomenon has applications in encryption, it is usudly an
undesirable event.

Figure 6-23; Overhead view of comb drive structurewith spring
constantsand dimensions labeled.

Anather limitation on comb drivesis that they are typically limited in the amount of work
they can do. With a maximum displacement of |, and, with |, being kept to a minimum due to
Equation 6-51, comb drives are just not cgpable of producing large scae motion. While this

131



problem can be designed around to a degreg, it is nevertheless a serious limitation to comb drive
usage.
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Figure 6-24: An example of the damage that resultswhen two comb drive electrodes
comeinto contact and short out the device.

An area that is dso important to consder in comb drive operétion is the effects of
paragitic capacitance with the subdrate.  Since the comb drive is a fairly large conductive
surface suspended over another large conductive surface, there is a consderable paragitic effect
between the substrate and the drive.  While this effect can be used to produce out of plane
torsond microactuators, it is often an undesirable sde effect of the comb drive design. It is
posshble to have such a large parasitic motion that the comb drive will actudly touch the
substrate, which will lead to the adhesion and possbly shorting problems. In a sound design,
the comb drive should be far enough removed from the substrate that the parasitic capacitance
will not cause diction.

Particulates can aso be problematic in comb drives. Conductive dust particles can
eectricaly connect parts of a comb, which will short them out, producing catastrophic current
flows. Comb drives could aso be susceptible to eectrostatic discharge. An ESD would have a
amilar effect as goplying a deta function to the device. If the voltage spike is large enough, it
could induce diction by bringing the plates into contact. Unfortunately there is no published
information on the effects of ESD on comb drives, which means that evauating the ESD
tolerance of adesign is not yet possible.
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iii) Additional Reading
W. C. Tang, T.-C. H. Nguyen, and R. T. Howe, “Laterdly Driven Polyslicon Resonant
Microstructures.” Proceedings of |EEE Microelectromechanical Systems, February 1989.

W. C. Tang, T.-C. H. Nguyen, M. W. Judy and R. T. Howe, “Electrostatic-comb Drive of
Laterd Polyslicon Resonators’ Transducers '89, Proceedings of the 5" International
Conference on Solid-Sate Sensors and Actuators and Eurosensors |11, Vol. 2, pp. 328-
331, June 1990.
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(6-32)
C. Micromotors

A mgor area of research in MEMS in the past decade has been into the design and
fabrication of micromotors.  There are multiple kinds of micromotors being designed today.
While most of these devices are dectrodtaticaly driven by sde eectrodes, as illustrated by
Figure 6-25, there are aso a number of other designs being implemented. However, for the
sake of brevity, this discusson will be limited to dectrogaticaly driven micromotors. The
section on rdiability will have implications to less conventional micromotors.

Figure 6-25: Electrogtatically driven micromotor. (from [22])
) Electrostatic Motor Analysis

Electrogtatic micromotors utilize variable capacitance in a fashion somewha smilar to
other dectrogtatic devices previoudy discussed. The main difference is that micromotors are
typicaly driven by severd different sets of drives, or stators, that are switched on and off to
produce atorque. Thistorque isafunction of the rotation angle of the drive][22]

(6-52)

Micromotors have a naturd operating frequency, which is determined by the magnitude
of torque applied to the motor. For amotor similar to the one depicted above, this frequency is.

2

Vo4 ]
Fo(V,) = LB 2 kHz (6-53)
100,
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where V, is the phase voltage gpplied to the stators. This leads to an equation for the maximum
rotational speed of the motor, Wiax:

. 240f,, om (6-54)
n

where n is the number of steps per revolution determined by*:

1
n =
el 19 (6-55)
& 15

where n; and n are the respective numbers of stators and rotors.

These motors can be ether used as microstepper motors or can be operated as a
continuoudy rotating motor. While the actud design and fabrication of these devices varies
depending upon agpplication, most eectrostatic motors are governed by the above physica
laws.[22,23]

i) Harmonic Motors

Harmonic motors are a kind of motor that utilizes the rolling motion of two bodies with
different crcumferences. Typicdly a motor contains a cylindricd hole, with a dightly smdler
cylindrica rotor. These motors have a tribologica interest as they utilize ralling ingtead of diding
friction, which eiminates many of the wear concerns common to other motors. Furthermore,
since the stators and rotors are designed to touch in these devices, large amounts of force can
be generated.

Using one of the origind harmonic motors as an example, there are some basic facts of
motor operation that are fairly common to al harmonic motors. If the stators are cycled & a
frequency of ws, thenit is possble to determine the steady state frequency of the harmonic
motor, w;:[87]

_ &R 0
RS T (6-56)

where R and R are dimensons defined in Figure 6-24.

! This derivation assumes adrive signal described by Y. —C. Tai et al. in[22].
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Figure 6-26: A basic harmonic motor layout. (from [88])

The unsymmetrical nature of the roll causes the rotor to effectively wobble ingde the
gator. One reliability concern of wobble motorsis that the direct contact of the stator and rotor
raises questions about stiction.

i) Microbearing Reliability Concerns

The biggest rdiability concern for micromotors is the motor's connection to the
subgtrate. Since the rotors must be supported on bearings, there is concern about the long term
reliability of these bearings. It has been shown that, over time, there will be wear on the
bearings caused by the frictiona forces from the substrate.  The wear on the bearings will
increase the frictiona force on the bearing, requiring higher driving voltages, which will further
increase wear.  This positive feedback loop will quickly lead to total device degradation. The
only effective method to mitigate wear on bearings is to salect wear- resstant materias.

In most macroscopic devices, liquid lubricants are used to prevent direct metdlic
contact. However, in MEMS, it isfdt that liquid lubricants will not be in generd use due to the
fact that viscous friction forces are large compared to other frictional forces on micrometer
scdes[19] While recent research has raised the possibility of using gas phase lubricants to
reduce wear, these solutions involve extremely high temperature operations and are unlikely to
be practica.[151] Instead, bearings are usualy operated dry at ambient temperature, with
direct contact made between dtructures. There have been studies conducted on these
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conditions and it has been found that different materias respond, as would be expected, in
digtinct ways to wear.

Severd studieq19,153] indicate that sngle crystd sliconis moderatey well suited as a
bearing materid. During initid burn-in, the rough points in a bearing will fracture off, leaving a
smoothed surface that shows little wear over time. As a result, the wear on silicon decreases
with time. Polyslicon shows moderate wear properties and is a suitable, athough not ided,
bearing material. As would be expected, SsN4, and SO, exhibit poor bearing characteritics.
They show linear wear that leads to total falure. Diamond-like carbon is a materid that has
shown promise as a bearing materid and may eventudly be used as a coating on many SCS and
polysilicon structures that have large contact stresses. While the exact characteristics of bearing
wear are dependent upon the materids involved and the environment in which they dide, agood
rule of thumb isthat wear is minimized by usng dissmilar hard materids

Another problem associated with wear on microbearings is thet, for dectrostaticaly
driven gructures, forces on the device will be a function of the device height, and thus bearing
height. Many devices place rotors above stators in order to have a non planar component of
force to partidly levitate the rotor. As the bearings wear, the eectrode distance would
decrease, which would cause forces to increase quadratically. This increases wear and dters
drive performance. This behavior acceerates falure and leads to total device collapse.
Ultimately, the contact morphologies of microbearings are the limiting factor in micromotor
performance and, as such, they need to be well understood for high-rel applications.

iv) Additional Reading

Long-Sheng Fan, Yu-Chong Ta, and Richad S. Muller, “IC-Processed Electrogtatic
Micromotors.” IEEE International Electronic Devices Meeting, December 1988.

Y u-Chong Tal, Long-Sheng Fan, and Richard S. Muller, “IC-Processed Micromotors: Design,
Technology, and Testing” Proceedings of IEEE Microelectromechanical Systems, February
1989.

U. Beerschwinger, D. Mathieson, R. L. Reuben, and S. J. Yang. “A study of Wear on MEMS
Contact morphologies’ Journal of Micromechanics and Microengineering, 7 September
1994.

S. C. Jacobsen, R. H. Price, J. E. Wood, T. H. Rytting, and M. Rafaelof, “The Wobble Motor:
An Electrodatic, Planetary Armature, Microactuator” Proceedings of |EEE
Microelectromechanical Systems, pp. 17-24, February 1989.
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VIl. Magnetic Actuators

Magnetic actuators are a dass of devices that, as their name implies, utilize magnetic
fields to provide force. While creating magnetic fields on semiconductor devices is intringcaly
more difficult than creating eectric fields, the potentid benefits of magnetic actuators has spurred
the devdopment of these devices. Due to the physics of magnetics, magnetic devices are
capable of producing grester forces than eectrostatics. Combined with the ability to apply
force through a conductive medium, such as dectrolytic fluids, these factors make magnetic
actuators a promisng fidd within MEMS[15]
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Figure6-27: A magnetic actuator designed by Judy et al. (from [15])

There are severa common methods employed in MEMS to make magnetic actuators.
A magnetic fied can be described from Maxwdl’ s equations.

~ ap o, &ofE
N B=¢c—+J)+c—+— _
g Cg ecgft (6-573)

N:B=0 (6-57b)

where
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B =magnetic fidd

¢ = the gpeed of light
E = dectric fidd

J= current density

These equations show that a magnetic field can be produced ether by a constant current
or by atime varying dectric fidd. While there are multiple methods to cregte one of these two
effects, the smplest way to create an actuating magnetic fied is through a loop of wire, as
shown in Figure 6-20. For these actuating fields to create motion, the actuator requires a
dructure that is influenced by the magnetic fiddd. The two most common Structures that will be
actuated in amagnetic fied are those with current loops on their surfaces and those coated with
magnetic films, such as ferromagnetic and diamagnetic materids. In ather case, the interaction
of the two magnetic fields creates an actuating force that then moves the Structure.

As with many of the technologies within MEMS, magnetic actuators are being
developed in amyriad of ways by different groups around the world.  Since magnetic actuators
have not become as standardized in MEMS as dectrodtatic actuators, it is difficult to discuss a
typical magnetic actuator. For this discussion, asmple actuator developed by Judy et d. will be
discussed to give an example of the forces a work within amagnetic device. This device, which
is shown in Figure 6-27, uses a ferromagnetic plate influenced by a loop of wire integrated into
the substrate.
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Figure 6-28: Diagram of forcesacting on soft magnetic plate. (from [15])
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A. Mechanical and Electrical Analysis

For this non-planar magnetic microactuator, the rotationd deflection is a function of the
magnetic fidd, H, and the giffness of the torson bar, k. Assuming that the magnetic fidd
remains perpendicular to the origind orientation of the plate, the torque produced by the
magnetic fidd, Traq is defined by:

Thietg = VinagM (H 4. + H . Sn( 2pft) cosf ) (6-58)
where
M = net magnetization vector
Vmag = Magnetic volume
Hae, Hae = magnetic field from respective dc and ac sources
f = ac current frequency
f =angle plate rotates from rest.

To determine the actud mechanicad response of the plate, it is necessary to use the
dynamic torsona mode of

I +Cf +kf =Ty (6-59)
where
Cf = dampening coefficient = %
J= polar moment of inertia of the magnetic plate
Q = qudity factor

To determinef as afunction of time, Equation 6-59 must be solved. This can be done
ather andyticdly or numericaly, dthough the andytic solutions might be difficult to obtain. In
order to do either, M must be defined, which is done below:

M :m)(J_rHC+Ha)
N

(6-60)

M

where
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H. = coercive fidd of the magnetic material under torque
H. = applied field ~ H* cos(90-f )

Nnm = shape-anisotropy coefficient of the plate

my = permesbility of free space (4p* 10° H/m)

The net result of the forces is that the plate will oscillate in the time varying magnetic
fiddd. While these equations give a basic description of the motion of a ferromagnetic platein a
magnetic field, other magnetic materids will have different responsesto amilar fields. Dueto the
fact that the exact internd effects of magnetic devices extend beyond the scope of this guideline,
an interested reader should examine the references listed at the end of the section to gain amore
detailed description of the physics of these devices.

B. Reliability Concerns

There are some basic problems with using magnetic forces in MEMS that need to be
understood. An inherent drawback to magnetic devices is that they scale poorly into the micro
domain. In order to scde adevice effectively, certain quantities must be held constant while the
physica dimengons of adevice shrink. If three basic quantities of current dengity, heat flux, and
temperature rise are consgdered to be held congtant during scaling, it becomes gpparent that
there are serious limitations to micro-magnetic actuators.

If current density is held congtant while scaling a device, then a wire with an order of
magnitude drop in the cross sectiona area will have an order of magnitude drop in current.
While this results in a congtant hest generation per unit volume, it will, for awire- generated field
operating on a permanent magnet, result in a drop in force of three orders of magnitude. While
thisloss can be dightly offset by the fact that smaller systems are better a conducting heat away,
clearly this method of scding severdly limits the effectiveness of micro-magnetic actuators.  If
instead the heet flux per unit of surface areafor awire is constant during scading, current dendity
scales according to the inverse square root of the change in heat flux, so that, for an order of
magnitude drop in cross sectiond area, there will be an increase in force on the order of 2.5
orders of magnitude. This scding is limited by the maximum dlowable temperature on a device
and is dso not a desrable method to increase force as dimensions decrease. If the system is
scded to limit the temperature difference, it is possble to have a two order of magnitude
increase in force. However, this comes a the expense of an increase in current dendty, which
makes the device much less efficient, which may not be acceptable for many gpplications. Thus,
magnetic devices cannot scde into the micro domain without sacrificing ether force, operating
temperature, or efficiency, which is a serious limitation.[55] As a result, any magnetic actuator
desgn must be verified to insure that it meets the design requirements without unacceptable
temperature disspation or power |0sses.
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Another issue to consder in usng magnetic actuators aboard spacecraft is the presence
of spurious magnetic fidds. Since modern spacecraft employ an array of electronic devices that
create magnetic fidds, these devices can be unintentionaly actuated by nearby devices. A good
model of the magnetic fidds in a spacecraft, which is usudly developed by the systems
engineers, will determine the risk leve for paragtic actuation.

C. Additional Reading

R. E. Pdrine, “Room Temperature, Open-Loop Levitation of Microdevices Using Diamagnetic
Materiads’, Proceedings of IEEE Microelectromechanical Systems pp. 34-37, February
1990.

R. E. Pdrine and |. Busch-Vishniac “Magneticdly Levitated Micromachines’, |IEEE Micro
Robots and Teleoperators, November 1987.

J W. Judy and R. S. Muller, “Magnetic Microactuation of Torsgona Polyslicon Structures”
Sensors and Actuators A, Physical, Vol. A53, Nos. 1-3, pp. 392-397, 1996.

J W. Judy and R. S. Muller, “Magneticaly Actuated, Addressable Microstructures’, Journal
of Microelectromechanical Systems, Vol. 6, No. 3, September 1997.
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VIIl. Thermal Actuators

Therma actuators are a class of devices that utilize heating to produce forces and
deflections.  These devices operate through the use of heat transport to rapidly change a
device's temperature.  Since MEMS devices operate on such small scdes, it is possble to
create devices with quick response times, as heat trangport occurs in scales often measured in
microseconds.  While some objections may be raised to the power disspation implicit with
these devices, they offer a ampler dternaive to many eectrodaticaly and magneticaly driven
devices.

A. Bimetallic Strips

The mogt prevaent thermaly actuated devices in MEMS are structures constructed out
of layered maerids. These thermd actuaors utilize the bimetdlic effect found in common
household thermometers. There have been a number of arguments made for the advantages of
bimetdlic actuators. Since there is a direct coupling between disspated power and beam
deflection, the actuators can operae a low voltage levels. Combined with the ability to
produce a force that is independent of displacement, thermd actuators have piqued serious
interest and have been developed independently by a number of researchers,[150]

B. Mechanical Analysis

Figure6-29: Sideview of two metallic stripsa and b bending dueto temperature stress.
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In these devices, two materids, often S-S0, or Si-SikN,4 are sandwiched together. As
the device heats up, the differing changes in length caused by mismatched thermd expansion
coefficient create stresses at the metdlurgica junction, which bends the device. Figure 6-29
illugtrates a bimetalic strip made of two cantilevered beams of lengths | that are exposed to a
temperature change, DT.

The converson factor g, relates a temperature change, DT, with a deflection at the end
of the cantilever, d, by:

d =gDT (6-61)

If auniform heat digtribution is assumed with the beams, then the converson factor can
be approximated for | <<r as

|2

2rDT (6-62)

g:

wherer isthe radius of curvature of the beam:

7 2 Eha’ | Eba
—\a + -2t + +
_22%72) Eba, Eba 663

3 (al - az)DT(ai+a2)

where a isthelinear coefficient of thermd expansion.

A doser mathemaicd andlyss of this equation will show that it is minimized when the
cantilever beams have identical values of b and a. For these beams, the deflection is given by:

& 1+c?

r= a 5+
3(a1— az)DT c

(6-64)

Ql-I1-O:

E,

wherec istheratio —=.
2

Since the absolute width of a structure does not influence bending, the smalest radius of
curvature, and thus the grestest deflection, will occur if (a;-a,) and | ae maximized, while ais
minimized. The smplest method to accomplish this comes through dtering | and a, as there are
only a few materids, and accompanying therma expanson coefficients, to choose from in the
semiconductor industry.[149]

As this derivation shows, the displacement of the drip is directly related to a change in
temperature. There are several ways to induce temperature changes. One common method is
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to apply an dectric current through the beam. The power disspated by the current flowing

through a resstor will produce a DT. The amount of energy needed to raise temperature is
determined by the heat capacity of the cantilever beams. In dtatic operation, it is desirable to
reduce dl the dimensions of the actuator so that there isless thermad loss. In dynamic operation,

as is the case for a high frequency switch, it is more useful to have larger surface areas with a
greater heat exchange and a corollary increase in switching rate.[52]

C. ShapeMemory Alloys

Shape memory dloy, or SMA, actuators are variants upon therma actuators that use
the shape memory dloy effect, which was first discovered in 1938 by Alden Greninger and
V.G. Mooradian.[56] Materias that experience the SMA effect undergo reversble phase
transformations. Below some critica temperature, the materid is in the martensite phase and
will easly deform. Above this temperature, the materid changes to the augtenite phase and
begins to exert strong forces trying to restore to its origind shape.

In the early 1960s, two researchers at the Nava Ordnance Laboratory discovered that
the dloy NiTi can have a phase trangtion that is a function of aloying content and varies
anywhere from -50 to 166°C. Since this materid, nicknamed nitinol, for Nickd Titanium Nava
Ordnance Laboratory, has superior mechanica properties, it is the materia of choice in modern
SMA research. While there are anumber of gpplications of SVIA materids, they dl share some
basic commondities[145]

A typica SMA usesanitinol wire connected to a heater which, as previoudy discussed,
can easly be a current flowing through aresstor. The materids properties of nitinol have been
investigated and show the expected temperature dependence.

Properties NiTiat 23°C  NiTi at 110°C
Young's Modulus 33.4 GPa 34.9 GPa
Linear Strain (at 10N) 1.6% 1.56%

Ductile Yied 20-30% 19-30%
Tendle srength 1.05 GPa 962-.1.7 GPa
Resdivity 4400W/cm 4400W/cm
Linear coefficient of expansion 1.5 10°°C* | .34 10°°C*

Table6-3: Propertiesof nitinol at different temperatures.[57]

The actud design of shape memory dloys varies wildly with gpplications. Studies have
shown that nitinol springs can develop stresses in excess of 200 MPa. While these forces are
impressive, SMA are not common MEMS devices and due to concerns discussed in Section C,
may not see integration into space environments.
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D. Reiability Issuesfor Thermal Actuators

One problem with making bimetdlic thermd actuators is that they induce large Stresses
in the devices. These stresses can cause serious problems for long term reliability. It is not
entirdy clear how the interfaces that slicon forms with other materids will behave under
repested stressing and unstressing.  Since these therma actuators operate by stresses materids
interfaces, there is an increased chance of fracture a this interface, which can lead to
delamination. There is ds0 an issue of long term thermd fatigue. Some of these devices are
heated to above 800 °C and cooled to ambient temperature within the span of severd tens of
microseconds,[137] which could cause sgnificant fatigue. The long term effects of thiscyding is
an issue that needs to be addressed in high-rel therma actuators.

Therma actuators are aso frequency limited. The response of the actuator is governed
by the timeit takes for heat to convect and radiate away from adevice. If the quantity 1/f isless
than the time it takes a device to disspate heet, oscillatory behavior will effectively stop, as
illustrated in Figure 6-30. This causes some interesting concerns for the space environment, as
there is no convective heet transfer in avacuum. Thus the time required to dissipate heat should
be sgnificantly dower than it isin terrestrid goplications.
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Figure 6-30: Mechanical response asa function of frequency for athermal actuator. (from [117])

Thetime, t, required for abody to cool can be modded by summing the sources of heat
energy and equating them to the sinks. For a body radiating heat and having no convective
trandfer, this results in the equation:[156]

mc%—{ =S &, A(T ‘- To“) (6-65)

Sp = Stefan-Boltzmann congtant (5.67° 10-8 W/n-K*)
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€n = emissvity of the materid
A = the surface area of the materid
To = initid temperature

By solving this equation, it is possble to get a limit on the time it takes for a radiaive
meass to cool, which indicates the frequency limit of a thermd actuator operating in the vacuum
of space.

Shape memory dloys have problems unique to their structures. Since these dloys are
usudly made of ductile materids, they experience wear and fatigue a much faster rates than
brittle materids.  While they can withstand dress in the range of a 1 GPa, the lifetime and
reliability of these devices @ these dresses is unauitable for long-term operation. If high
reliability and millions of temperature cycles are desired, then nitinol should be Stretched from its
memory state only afew percent and should not exceed a couple hundred MPa of stress.

Another concern with these devices in gpace gpplications is inadvertent heating. Since
most spacecraft experience wide temperature swings from periods of full solar exposure to
eclipse, these devices will ether have to have active on-chip therma control or be in a well
thermally regulated part of the spacecraft. Otherwise there could be disastrous implications in
using thermd actuators in the space environmen.

E. Additional Reading

W. Rieghmiller and W Benecke, “Thermdly Excited Slicon Microactuators’ IEEE
Transactions on Electron Devices, Vol. 35, No. 6, June 1988.

P. A. Neukomm, H. P. Bornhauser, T. Hochuli, R. Paravicini, and G. Schwarz, “ Characteristics
of Thinwire Shape Memory Actuators’ Transducers '89, Proceedings of the 5"
International Conference on Solid-State Sensors and Actuators, Val. 2, pp. 247-252, June
1990.
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I1X. Piezodectric Actuators

Piezodectric materids exhibit motion under an applied dectric fidd. The piezodectric
effect has been wdl researched and understood for many years and the MEM S community has
used piezoelectrics to build devices that produce strong forces with smdl actuation distances.

A. ThePiezodlectric Effect

Piezoelectricity determines the digtribution of the eectric polarization and demondtrates
how a piezodectric field reacts to an dectric stress by emitting depolarization waves[6] This
polarization field islinearly related to mechanicad strain in certain types of crystas, such as quartz
and GaAs. When the crygtd is in equilibrium, strain is balanced by interna polarization force.
However, when equilibrium is offset by externa mechanica dress or by an externa dectric
field, the emitting depolarization field will cregte a force to restore interna equilibrium. As a
result, an externdly produced dectric field will cause a displacement and an externdly produced
mechanica stresswill creste an dectric fied.

Since the piezodlectric effect couples mechanica and dectricd fidds effectively, it has
been researched in a multitude of materids. In 1910, Voigt showed that there were 32 classes
of crydds that exhibited piezoelectric properties, and he measured coupling coefficients for
these. In MEMS, the most common materids used are crystdline SO, (Quartz), ZnO, AIN,
and PZT.

Figure 6-31: Diagram of a piezoelectrictransducer (after [106]). An applied voltage causesthe
piezoelectric material to expand, which drivesthe structure.
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B. Piezodectric Devices

Piezodlectric devices can be constructed out of a number of different structures. A
common implementation of piezodectrics is to produce a piezodectric mass and connect
electricd leads to it, as shown in Figure 6-25. The extenson and contraction of the
piezodectric bar is governed by the equation:

D= Ere (6669

T=ce+eE (6-660)

where
E =thedectricfidd
D = dectric digolacement at equilibrium
€. = dielectric condtant & zero strain
e = isthe piezodectric stress constant
e = mechanicd sran
T =externally applied stress
Ce = dadiic diffness at equilibrium

S0, dearly, the mechanicd displacement in this structure is coupled to the gpplied
dectric fidd. One limitation of piezodectric devices is that the actuation distance is usudly
smdl. Since piezoelectric devices operate by inducing adrainin acrystd, it would be extremdy
unusua to digplace a piezodectric device more than afew percent of itstotal length.

Piezodectric devices are dso commonly used as sensors. Since piezoelectric maerids
are dectromechanicaly coupled, these devices can be used in much the same manner as
piezoresstive dements, with srain being converted into a change in current instead of a change
in resgivity.

C. Reliability I'ssues

Piezodectric devices operate by inducing stress in a materid. As such, they should be
treated as structura devices and be analyzed for dtress didtributions to prevent fracture. The
difficulty with dructurd andyss in piezodectric devices sems from the fact that piezodectric
materids have unusua crysta structures. Quartz, for example, is arhombohedra structure with
nine individud dastic condants. For these materids Y oung's modulus and Poisson's ratio will
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exhibit less symmetry than cubic crysds While the andyses for these materids is not
intractable, it is not as straightforward asiit isfor cubic crystas.

Piezoelectric devices dso generate a condderable heat. Since these devices are
subjected to mechanica stresses and have sgnificant dectrica losses, there is heat trandfer
acrossadevice. For arectangular piezodectric actuator driven at a frequency f, there will be a
change in temperature, DT, determined by:[116]

k(T)A (6-67)
where
K(T)=s e, (T2 +T2)T+T,)+h,
h, = the average convective hest transfer coefficient (6-30 W/n-K in air)

u = loss of the materid per cycle
A = surface area of the piezodectric actuator

Ve = effective volume of the piezodectric actuator (volume of the materid not at
equilibrium)

This hegt production will stress a materia and will dso limit the performance of adevice.
Piezodectricity is dso, like piezoresstivity, temperature sengtive. As such, the heat generation
must be consdered in determining the religbility characterigtics of a piezodectric device[116]

D. Additional Reading

J W. Judy, D. L. Polla, and W. P. Robbins, “Experimenta Modd and |C-Process Design of a
Nanometer Linear Piezoelectric Stepper Motor” Microstructures, Sensors and Actuators,
DSC-Val. 19, pp. 11-17, November, 1990.

K. Ikuta, S. Aritomi, T. Kabashima, “Tiny Slent Linear Cybernetic Actuator Driven by
Pezodectric Device with Electromagnetic Clamp’, IEEE Proceedings Microelectro-
mechanical Systems, pp. 232-237, February 1992.
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